# **CCD-based Sensors for High Energy Physics**

#### **Konstantin Stefanov**







#### **Short Personal Introduction**

- PhD in physics from Saga University, Japan
  - Thesis on radiation damage effects in CCDs, caused by electron and neutron damage
  - CCDs were intended for use in a vertex detector
  - Particle tracking to micron level in high energy physics experiments
- Worked at Rutherford Appleton Laboratory (UK) for 7 years
  - Development of CCD-based sensors for the vertex detector at the International Linear Collider
  - High speed column parallel CCDs
  - Novel "CCD in CMOS" devices
- Presently at Sentec Ltd, Cambridge, England
  - Scientific and electronics consultancy company

#### **Contents**

- CCD principles
- High speed column parallel CCDs
- CCD-based in-situ storage image sensor (ISIS) in CCD and CMOS technologies
- Future very large scale pixel detectors Silicon Pixel Tracker

## **Some History**



The first CCDs used for studies of charm production at CERN (NA32 experiment, 1984)







The VXD3 upgrade vertex detector: 96 large CCDs, 307 Million pixels (1996)

## **Vertex Detector for the International Linear Collider (ILC)**





- The vertex detector is nearest to the beam pipe -"tracking microscope"
- Contains almost a billion pixels (20 μm × 20 μm)
- Beam timing, power and material constraints make the development very challenging
- CCD-based detector development at RAL focused on the ILC requirements



#### **CCDs as Particle Detectors**

#### **Numerous advantages:**

- Small pixel size 20 μm for ILC, but down to below 3 μm possible;
- Thin sensitive volume e.g. 20 µm epitaxial layer, signal is ≈80 e-/µm of track;
- Good spatial resolution helped by charge spreading;
- 100% fill factor Full Frame Transfer CCDs;
- Excellent uniformity in response and gain;
- Low readout noise : below 10 e- at 1 MHz;
- Large, wafer-scale devices available

#### However ...

- Vulnerable to bulk radiation damage effects Charge Transfer Inefficiency
- Power dissipation in the output source followers is high, lots of bias voltages
- Difficult to integrate with CMOS logic on the same chip
- Image area has large capacitance, challenge to drive at high speeds

## **CCD Principles**

#### **Buried Channel CCD:**

- Starting material is *p*-type epitaxial layer
- n-type implant creates potential peak at depth of ~100 nm
- Charge is kept away from traps at the surface







#### Two-phase CCD:

- Additional *p*-type inter-gate implant creates potential barriers for charge separation
- Symmetry of drive

## **Charge Collection in CCDs**

 $\bullet$  Two-phase buried channel CCD with 20 µm thick, 100  $\Omega.cm$  epitaxial silicon;

• Pixel size: 20 μm

About 10 µm is depleted



## **Charge Transport in CCDs**

- Two-phase CCD
- Clocks change from -2 V to +2 V (and from +2 V to -2 V) in 10 ns



## The Column Parallel CCD (CPCCD)



CCDs made by e2v Technologies

- The CPCCD is an extremely fast type of CCD employing massive parallel readout
- Two generations of CPCCDs produced to date
- $_{
  m e}$  Clock amplitude is only 1.4 V  $_{
  m pkpk}$  sine wave, noise < 75e- @ 10 MHz

## **Bump-bonded CPCCD with Readout ASIC**

- Dedicated readout and driver ASICs developed at RAL
  - Readout chip employs sparse data algorithms
  - Driver delivers CCD clocks up to 20 Amps at 50 MHz
- Bump-bonded CPC2-40/CPR2 driven by two CPD1 chips
  - First time e2V CCDs have been bump bonded
  - Works up to 9 MHz (standalone CCD up 45 MHz)
  - 5 cm long CCD, signals pass 5 "stitches"
  - Performance of the readout chip is limiting factor, and gradually deteriorates at higher frequencies (missing and/or spurious codes)



## How the CPC and the CPR Work Together



#### **Busline-free CPCCD**



- One of the major problems with the CPCCD is the driving of the huge gate capacitance (e.g. 40 nF at 50 MHz sine wave)
  - Low clock amplitudes essential, below 2 Vpp
  - Traditional clock distribution (busline along the chip edge) does not work
- High speed (busline-free) devices with 2-level metal clock distribution:
  - The whole image area serves as a distributed busline
  - Special technique developed to work with the single level metal at e2V

#### **Clock Driver for CPC2: CPD1**

- Designed to drive:
  - Outer layer CCDs (127 nF/phase) at 25 MHz
  - Layer1 CCDs (40 nF/phase) at 50 MHz
  - CPC2 requires 21 Amps/phase @ 2V<sub>pkpk</sub>
- One chip drives 2 phases, up to 3.3 V clock swing
- 0.35 µm CMOS process, chip size 3 x 8 mm²
- 8 independent clock sections
- Careful layout on- and off-chip to cancel inductance, bump-bondable
- Parasitic inductance kept in the order ~100 pH (stand-alone bond wire is 1 nH/mm!)





#### **Clock Driver for CPC2: CPD1**



Steve Thomas, Peter Murray, RAL

- Internal 2 nF load capacitor to one section
- CPD1 driving 32 nF-equivalent internal load at 50 MHz



## **CCDs for Lower Gate Capacitance**



- High CCD capacitance is a challenge to drive because of the currents involved
  - Can we reduce the capacitance and the clock amplitude? (both reduce power)
  - ❖ Inter-gate capacitance C<sub>ig</sub> is dominant, depends mostly on the size of the gaps and the gate area
  - ❖ New ideas for reduced overlap promise to reduce C<sub>ig</sub> by a factor of up to 4.
- Together with e2V Technologies designed several small CCDs to test ideas for reduction of capacitance and clock amplitude.

## **CCDs for Lower Gate Capacitance**



"Pedestal gate" CCD

- Inter-gate capacitance C<sub>ig</sub> is dominant
- C<sub>ig</sub> depends mostly on the size of the gaps and the gate area
- Open phase CCD profiled gates, could reduce C<sub>iq</sub> by a factor of 2.
- "Pedestal gate" CCD promises to reduce C<sub>ig</sub> by a factor of 4.

## **Open Phase CCD with Channel Taper**



## **CCDs for Lower Gate Capacitance**



- Together with e2V Technologies designed 29 different types of small CCDs to test ideas
- 6-inch wafers now, CPC1 and CPC2 were on 5-inch
- 360 chips/wafer

### **CCDs for Lower Gate Capacitance**





Open gate CCD

"Pedestal gate" CCD

- Two-stage source followers on 4 columns
- Lots of designs and process variants
- 4-phase drive with options for 2-phase

## In-situ Storage Image Sensor (ISIS)



#### **Operating principles of the ISIS:**

- 1. Charge collected under a photogate;
- 2. Charge is transferred to 20-pixel storage CCD *in situ*, 20 times during the 1 ms-long train;
- 3. Conversion to voltage and readout in the 200 ms-long quiet period after the train (high tolerance to beam-related RF interference);
- 4. 1 MHz column-parallel readout is sufficient;

## First ISIS Prototype: ISIS1



- 16×16 array of ISIS cells with 5-pixel buried channel
   CCD storage register each;
- Cell pitch 40  $\mu m \times 160 \ \mu m$ , no edge logic (pure CCD process)

Column transistor

OUT

- Chip size  $\approx$  6.5 mm  $\times$  6.5 mm
- Manufactured by e2V Technologies (UK)



## ISIS1 under the microscope



## In-situ Storage Image Sensor (ISIS)



- The ISIS offers significant advantages:
  - Easy to drive because of the low clock frequency: 20 kHz during capture, 1 MHz during readout
  - ~100 times more radiation hard than CCDs (fewer charge transfers)
  - Very robust to beam-induced RF pickup
- ISIS combines CCDs, active pixel transistors and edge electronics in one device

### **CMOS ISIS2 – Potentials**



## **CMOS ISIS2 – Doping Profiles**



## **CMOS ISIS2 – Operation**



## **CMOS ISIS2 – Charge Transfer**



## **ISIS2 – Pre-release Pixel Layout**



- 80 µm × 10 µm pixels
- 5 µm wide buried channel, 3+3 metal layers

## **ISIS2 – Summary**



- One of the first monolithic buried channel CCD/CMOS devices in the world
  - Several different pixels designs
  - Many test structures
- Design derived after intensive simulation work
- Custom doping profiles
- Non-overlapping, single layer polysilicon gates
- Deep p+ buried implant for charge shielding
- Buried channel and surface channel transistors
- Made on a customised 0.18 µm 6-level metal dual gate (1.8V/5V) imaging CMOS process

#### ISIS2 – Results





#### **Results:**

- Device works well, but new untested technology has produced some surprises
- Charge transfer demonstrated
- Noise around 5 e- rms
- Storage pixel capacity = 6ke-

## **Charge Transfer in CMOS**

### Why charge transfer in CMOS?

- Allows separate optimisation of charge collection and charge sensing elements
  - Large pixels with fast charge collection in CMOS possible
  - High responsivity due to the low capacitance sense node in submicron CMOS
  - Sophisticated on-chip logic and electronics
- Allows signal processing of charge without adding electronics noise
- Opens up new opportunities in CMOS:
  - Time delayed integration
  - Electron multiplication by impact ionisation
  - Completely new applications
- Number of transfers should be kept low to avoid inefficiency.

## **Other Applications for Tracking**

#### Photogate transfer with Buried Channel CCD storage



TG

V1 < V2 < V3 < V4

- Large pixels thanks to buried channel collection
- Charge collection is faster due to larger depleted areas
- Charge transfer allows optimal correlated double sampling and low noise
- Charge transfer to the node by "funnel" action
- Possible problems with inefficient transfer due to intergate gaps

## Silicon Pixel Tracker Based on the SiD Design



### Silicon Pixel Tracker for ILC:

- Barrel and Forward trackers, total area = 70.3 m<sup>2</sup>
- With 50 µm x 50 µm pixels − 28.1 Gpix system
- Low mass support, gas cooling
- If each chip is 8 cm × 8 cm (2.6 Mpix): 11,000 sensors is total
- Readout and sparsification scheme to be developed

## Integrating, Time Slicing, Bunch Stamping Options





#### In the barrel:

- It could be possible to integrate all events (and the background) and read in the inter-train gap
- It remains to be proven that the pattern recognition does not deteriorate
  - Additionally, the detector becomes highly tolerant to beam-induced EMI

#### **General Considerations for the SPT**

- The main challenge is to reduce material and therefore power
- Sensors ≈100 µm thick, low mass support (<1% X₀ per layer in the SiD design)
- Gas cooled, power dissipation ~O(100 W), in SiD < 500 W</li>
- Pixel size around 50 μm × 50 μm (point resolution ≈14 μm in binary mode)
- Bunch stamping/time slicing tracker:
  - Implies on-pixel intelligence and therefore more power
  - ❖ Binary readout and sparsification most likely, but measurement of charge centroid is not excluded
- Integrating:
  - Lowest power (due to slow readout) and low mass
  - Full pixel readout to local readout chip
  - ❖ Resolution likely to improve below 14 µm due to the use of charge centroid

#### We have considered two technology solutions:

- Charge Coupled Devices can do only integrating
- Monolithic Active Pixel Sensors can do bunch stamping, time slicing, integrating

## **Large Existing CCDs**





- Wafer scale CCD from e2V
- 6-inch wafers

- 40 µm pixel CCDs using advanced charge collection and transport
- Noise = 5e- at 1 MHz
- Samples from e2V

#### Conclusion

- CCD-based detectors for particle physics offer unique advantages
- CPCCD : Complex high speed hybrid assemblies with 2 ASICs demonstrated
- ISIS: novel CMOS sensor with CCD signal storage
- Bright future ahead for advanced CCD/CMOS imaging devices
  - Combining the best of both worlds
  - Open up new applications
  - First devices made, more to be done







## **Additional Material**

## Radiation Damage Effects in CCDs: Simulations





- Full 2D simulation based on ISE-TCAD developed
- Trapped signal electrons can be counted
- CPU-intensive and time consuming
- Simpler analytical model also used, compares well with the full simulation
- Window of low Charge Transfer
   Inefficiency (CTI) between -50 °C and 0 °C
- This is very important for the viability of the CCD option and should be verified experimentally

#### **CPC1/CPR1 Performance**

#### 5.9 keV X-ray hits, 1 MHz column-parallel readout



Voltage outputs, noninverting (negative signals)

Noise ≈60 e-

First time e2V CCDs have been bump-bonded

Charge outputs,

Noise ≈100 e-

signals)

- High quality bumps, but assembly yield only 30%: mechanical damage during compression suspected
- Differential non-linearity in ADCs (100 mV full scale): addressed in CPR2



**Bump bonds on CPC1** under microscope

## Beam Structure at the ILC and Implications for the Tracker



#### **Considering the barrel:**

- Physics event rate is tiny: 1.5 hits/BX over all of layer 1 (20 cm radius)
- Background is photons:
  - Converted on 300 µm Si gives 0.002 hits/cm².BX, or 6 hits/cm² for the train (in the barrel)
  - On 100 µm thick Si this is 2 hits/cm² for the train
- With 50  $\mu$ m  $\times$  50  $\mu$ m pixels (point resolution  $\approx$ 14  $\mu$ m) the occupancy in L1 would be only 0.005% for the whole bunch train!